195 research outputs found

    Review of next generation hydrogen production from offshore wind using water electrolysis

    Get PDF
    \ua9 2023 The Author(s)Hydrogen produced using renewable energy from offshore wind provides a versatile method of energy storage and power-to-gas concepts. However, few dedicated floating offshore electrolyser facilities currently exist and therefore conditions of the offshore environment on hydrogen production cost and efficiency remain uncertain. Therefore, this review focuses on the conversion of electrical energy to hydrogen, using water electrolysis located in offshore areas. The challenges associated with the remote locations, fluctuating power and harsh conditions are highlighted and recommendations for future electrolysis system designs are suggested. The latest research in polymer electrolyte membrane, alkaline and membraneless electrolysis are evaluated in order to understand their capital costs, efficiency and current research status for achieving scaled manufacturing to the GW scale required in the next three decades. Operating fundamentals that govern the performance of each device are investigated and future recommendations of research specifically for the integration of water electrolysers with offshore wind turbines is presented

    Boosting the oxygen evolution activity in non-stoichiometric praseodymium ferrite-based perovskites by A site substitution for alkaline electrolyser anodes

    Get PDF
    Sustainable fossil fuel free systems are crucial for tackling climate change in the global energy market, and the identification and understanding of catalysts needed to build these systems plays a vital role in their development. ABO3−δ perovskite oxides have been observed to be potential replacement materials for the high-performing, but low ionic conducting and economically unfavourable Pt and IrO2 water splitting catalysts. In this work increased addition of Sr2+ aliovalent dopant ions into the crystal lattice of Pr1−xSrxFeO3−δ perovskites via A site substitution was seen to drastically improve the electrocatalytic activity of the oxygen evolution reaction (OER) in alkaline environments. The undoped PrFeO3−δ catalyst was not catalytically active up to 1.70 V against the reversible hydrogen electrode (RHE), whilst an onset potential of 1.62 V was observed for x = 0.5. Increased strontium content in Pr1−xSrxFeO3−δ was found to cause a reduction in the lattice parameters and crystal volume whilst retaining the orthorhombic Pbnm space group throughout all dopant levels, analysed using the Rietveld method. However, it was noted that the orthorhombic distortion was reduced as more Sr2+ replaced Pr3+. The mechanism for the increased electrocatalytic activity with increased strontium is due to the increasing concentration of oxygen vacancy (δ), leading to increased catalyst site availability, and the increased average oxidation state of Fe cations, consistent with the iodometric titration results. This results in shifting the average d shell eg electron filling further towards unity. X-ray photoelectron spectrum of the O 1s core level also shows the presence of lattice oxide and surface hydroxide/carbonate. This work shows promise in that using the more abundant and more economically friendly material of strontium allows for improved OER catalytic activity in otherwise inactive perovskite catalyst oxides

    An efficient cathode electrocatalyst for anion exchange membrane water electrolyzer

    Get PDF
    \ua9 2024 The AuthorsA high performance and durable electrocatalyst for the cathodic hydrogen evolution reaction (HER) in anion exchange membrane (AEM) water electrolyzers is crucial for the emerging hydrogen economy. Herein, we synthesized Pt–C core-shell nanoparticles (core: Pt nanoparticles, shell: N-containing carbon) were uniformly coated on hierarchical MoS2/GNF using pyrolysis of h-MoS2/GNF with a Pt-aniline complex. The synthesized Pt–C core-shell@h-MoS2/GNF (with 11.3 % Pt loading) showed HER activity with a lower overpotential of 30 mV at 10 mA cm−2 as compared to the benchmark catalyst 20 % Pt–C (41 mV at 10 mA cm−2) with improved durability over 94 h at 10 mA cm−2. Furthermore, we investigated the structural stability and hydrogen adsorption energy for Pt13 cluster, C90 molecule, h-MoS2 sheet, Pt13–C90 core-shell, and Pt13–C90 core-shell deposited h-MoS2 sheets using density functional theory (DFT) simulations. We investigated the Pt–C core-shell@h-MoS2/GNF catalyst active sites during HER performance using in-situ Raman analysis as well as DFT. We fabricated AEM water electrolyzers with cathode catalysts of Pt–C core-shell@h-MoS2/GNF and evaluated device performance with 0.1 and 1.0 M KOH at 20 and 60 \ub0C. Our work provides a new pathway to design core-shell electrocatalysts for use in AEM water electrolyzers to generate hydrogen

    Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization

    Get PDF
    In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain unclear. Here, we use non-negative matrix factorization (NMF) – a dimensionality reduction technique – to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor dimensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures

    A RAS-independent biomarker panel to reliably predict response to MEK inhibition in colorectal cancer

    Get PDF
    BACKGROUND: In colorectal cancer (CRC), mutations of genes associated with the TGF-β/BMP signaling pathway, particularly affecting SMAD4, are known to correlate with decreased overall survival and it is assumed that this signaling axis plays a key role in chemoresistance. METHODS: Using CRISPR technology on syngeneic patient-derived organoids (PDOs), we investigated the role of a loss-of-function of SMAD4 in sensitivity to MEK-inhibitors. CRISPR-engineered SMAD4(R361H) PDOs were subjected to drug screening, RNA-Sequencing, and multiplex protein profiling (DigiWest(R)). Initial observations were validated on an additional set of 62 PDOs with known mutational status. RESULTS: We show that loss-of-function of SMAD4 renders PDOs sensitive to MEK-inhibitors. Multiomics analyses indicate that disruption of the BMP branch within the TGF-β/BMP pathway is the pivotal mechanism of increased drug sensitivity. Further investigation led to the identification of the SFAB-signature (SMAD4, FBXW7, ARID1A, or BMPR2), coherently predicting sensitivity towards MEK-inhibitors, independent of both RAS and BRAF status. CONCLUSION: We identified a novel mutational signature that reliably predicts sensitivity towards MEK-inhibitors, regardless of the RAS and BRAF status. This finding poses a significant step towards better-tailored cancer therapies guided by the use of molecular biomarkers

    Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation

    Get PDF
    Acetic acid bacteria (AAB) are obligately aerobic bacteria within the family Acetobacteraceae, widespread in sugary, acidic and alcoholic niches. They are known for their ability to partially oxidise a variety of carbohydrates and to release the corresponding metabolites (aldehydes, ketones and organic acids) into the media. Since a long time they are used to perform specific oxidation reactions through processes called “oxidative fermentations”, especially in vinegar production. In the last decades physiology of AAB have been widely studied because of their role in food production, where they act as beneficial or spoiling organisms, and in biotechnological industry, where their oxidation machinery is exploited to produce a number of compounds such as l-ascorbic acid, dihydroxyacetone, gluconic acid and cellulose. The present review aims to provide an overview of AAB physiology focusing carbon sources oxidation and main products of their metabolism

    Rectal Carriage of Extended-Spectrum Beta-Lactamase-Producing Gram-Negative Bacilli in Community Settings in Madagascar

    Get PDF
    BACKGROUND: Extended-spectrum ß-lactamase-producing Enterobacteria (ESBL-PE) emerged at the end of the 1980s, causing nosocomial outbreaks and/or hyperendemic situations in hospitals and long-term care facilities. In recent years, community-acquired infections due to ESBL-PE have spread worldwide, especially across developing countries including Madagascar. OBJECTIVES: This study aimed to determine the prevalence and risk factors of intestinal carriage of ESBL-PE in the community of Antananarivo. METHODS: Non-hospitalized patients were recruited in three health centers in different socio economic settings. Fresh stool collected were immediately plated on Drigalski agar containing 3 mg/liter of ceftriaxone. Gram-negative bacilli species were identified and ESBL production was tested by a double disk diffusion (cefotaxime and ceftazidime +/- clavulanate) assay. Characterization of ESBLs were perfomed by PCR and direct sequencing . Molecular epidemiology was analysed by Rep-PCR and ERIC-PCR. RESULTS: 484 patients were screened (sex ratio  = 1.03, median age 28 years). 53 ESBL-PE were isolated from 49 patients (carrier rate 10.1%). The isolates included Escherichia coli (31), Klebsiella pneumoniae (14), Enterobacter cloacae (3), Citrobacter freundii (3), Kluyvera spp. (1) and Pantoae sp.(1). In multivariate analysis, only the socioeconomic status of the head of household was independently associated with ESBL-PE carriage, poverty being the predominant risk factor. CONCLUSIONS: The prevalence of carriage of ESBL in the community of Antananarivo is one of the highest reported worldwide. This alarming spread of resistance genes should be stopped urgently by improving hygiene and streamlining the distribution and consumption of antibiotics
    corecore